Neuropeptide Y Is Produced by Adipose Tissue Macrophages and Regulates Obesity-Induced Inflammation
نویسندگان
چکیده
Neuropeptide Y (NPY) is induced in peripheral tissues such as adipose tissue with obesity. The mechanism and function of NPY induction in fat are unclear. Given the evidence that NPY can modulate inflammation, we examined the hypothesis that NPY regulates the function of adipose tissue macrophages (ATMs) in response to dietary obesity in mice. NPY was induced by dietary obesity in the stromal vascular cells of visceral fat depots from mice. Surprisingly, the induction of Npy was limited to purified ATMs from obese mice. Significant basal production of NPY was observed in cultured bone marrow derived macrophage and dendritic cells (DCs) and was increased with LPS stimulation. In vitro, addition of NPY to myeloid cells had minimal effects on their activation profiles. NPY receptor inhibition promoted DC maturation and the production of IL-6 and TNFα suggesting an anti-inflammatory function for NPY signaling in DCs. Consistent with this, NPY injection into lean mice decreased the quantity of M1-like CD11c(+) ATMs and suppressed Ly6c(hi) monocytes. BM chimeras generated from Npy(-/-) donors demonstrated that hematopoietic NPY contributes to the obesity-induced induction of Npy in fat. In addition, loss of Npy expression from hematopoietic cells led to an increase in CD11c(+) ATMs in visceral fat with high fat diet feeding. Overall, our studies suggest that NPY is produced by a range of myeloid cells and that obesity activates the production of NPY in adipose tissue macrophages with autocrine and paracrine effects.
منابع مشابه
Effect of blockade of neuropeptide Y receptor on aortic intima-media thickness and adipose tissue characteristics in normal and obese mice
Objective(s): Atherosclerosis is an important risk factor for coronary heart disease. Neuropeptide Y (NPY) and its receptors, located in peripheral tissue such as white adipose tissue, have been linked to obesity and fat storage. The role of NPY in atherosclerosis has not yet been fully studied, so this study was conducted to further investigate the effect of BIIE 0246, an NPY receptor antagoni...
متن کاملNeuropeptide Y1 Receptor in Immune Cells Regulates Inflammation and Insulin Resistance Associated With Diet-Induced Obesity
Recruitment of activated immune cells into white adipose tissue (WAT) is linked to the development of insulin resistance and obesity, but the mechanism behind this is unclear. Here, we demonstrate that Y1 receptor signaling in immune cells controls inflammation and insulin resistance in obesity. Selective deletion of Y1 receptors in the hematopoietic compartment of mice leads to insulin resista...
متن کاملThe Role of Inflammation and Changes of Adipose Tissue-Resident Immune Cells in Increasing the Risk of Cancer: A Narrative Review
The incidence of obesity, as a major health problem, has increased significantly over the past decades. This condition is associated with an increased risk of cancers, type 2 diabetes, and cardiovascular diseases. The current study aimed to investigate the effects of inflammation and changes of adipose tissue-resident immune cells on increasing the risk of cancer in obese individuals. In obesit...
متن کاملStromal cell cadherin-11 regulates adipose tissue inflammation and diabetes.
M2 macrophages, innate lymphoid type 2 cells (ILC2s), eosinophils, Tregs, and invariant NK T cells (iNKT cells) all help to control adipose tissue inflammation, while M1 macrophages, TNF, and other inflammatory cytokines drive inflammation and insulin resistance in obesity. Stromal cells regulate leukocyte responses in lymph nodes, but the role of stromal cells in adipose tissue inflammation is...
متن کاملNovel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue
Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macr...
متن کامل